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The formation of prismatic dislocation loops in a core nanowire coated with a thin shell has been investi-
gated in the hypothesis where the core-shell interface is coherent leading to misft stress. In the framework of
a thermodynamic equilibrium approach, the energy variation from the dislocation-free heterostructure has been
calculated and the equilibrium positions of the loops have been determined as a function of the misfit stress, the
nanowire radii, and the ratio of the shear modulus between the two phases. Depending on misft strain and radii,
it is found that for a sufficiently soft core with respect to the shell, prismatic dislocation loops may form into
the inner nanowire with equilibrium positions located at a few interatomic distances from the interface.
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Nanowires and nanowhiskers have recently attracted
much attention because of their increasing importance in
fundamental research on electrical transport1 and growth
processes2 at the nanoscale or on optical properties of low-
dimensional structures.3,4 They are also used for a wide
range of applications in nanoelectronics, including field-
effect transistors’ logical gates and single-electron
transistors5,6 or optoelectronic devices.7,8 Composite nano-
wires can be produced either by one-dimensional modulation
of nanowire composition and doping9–11 or by modulation12

of the radial composition and doping in the nanowires. When
coherent interfaces are present in such heterostructures, the
resulting misft stress may affect their plasticity. In the case of
a misfit layer coherently grown at the top of a free-standing
nanowhisker, a theoretical study of the nucleation of interfa-
cial dislocations has been performed in the framework of
continuum mechanics and a critical layer thickness depend-
ing on the radius of the structure has been determined.13 The
nucleation of dislocations in strained core nanowires embed-
ded in matrices has been also considered. In the case of a
stressed core nanowire embedded in a finite-size shell of
identical elastic constants, Ovid’ko et al.14,15 have deter-
mined the critical thickness of the inner wire beyond which
edge dislocations and prismatic dislocation loops can de-
velop at the coherent interface to release the misft stress. In a
strained annular film grown on a nanopore incorporated into
an infinite-size matrix, it has been demonstrated that the ratio
of the shear modulus between the two phases influences the
critical thickness of the film beyond which the formation of
screw misft dislocations at the film/matrix interface is ener-
getically favorable.16 Likewise, the formation of screw dis-
location dipoles to release the misft stress has been investi-
gated for a strained cylindrical precipitate embedded in a
matrix of infinite size with a coherent precipitate/matrix
interface.17 It has been found that for a softer matrix than the
precipitate, the formation of such dipoles may be energeti-
cally favorable in the matrix at a finite distance from the
interface, this distance increasing with the shear modulus
ratio between the matrix and the precipitate. When a core-
shell nanowire is embedded in an infinite matrix, the equi-
librium positions of edge dislocations have been also found
to depend on the interfacial stress and the elastic constants of
the two phases.18 The shear modulus effect has already been

analyzed in a planar structure composed of a thin film coher-
ently strained on a semi-infinite substrate.19 It has been dem-
onstrated that rows of misft edge dislocations are repelled
from the interface into the softer material. High-resolution
TEM observations of the interface between an alumina pre-
cipitate and a niobium matrix, with a relative shear modulus
between the precipitate and the matrix on the order of 3.7,
have also evidenced the presence of misft dislocations in the
matrix at four interatomic distances from the interface.20

In this paper, the problem of the formation of prismatic
dislocation loops is investigated in a core-shell heterostruc-
ture composed of a core nanowire coherently strained in a
thin shell matrix of different shear modulus. In the frame-
work of a thermodynamic equilibrium approach, the energy
variation from the configuration free of dislocation is deter-
mined and the loop equilibrium positions with respect to the
interface have been studied as a function of the ratio of the
shear modulus, the inner and outer radii and the misft stress.

A cylindrical inner nanowire of radius �i, shear modulus
�i, and Poisson’s ratio �i is considered in a thin shell of outer
radius �o, shear modulus �o, and Poisson’s ratio �o. Classical
cylindrical coordinate system �� ,� ,z� is used and both nano-
wires are supposed to be infinitely long along their common
�Oz� axis. The misft stresses in both materials resulting from
the coherent interface between the two phases has already
been determined in a number of papers.14,15,21–24 Ray-
chaudhuri and Yu21 have studied the case where both core
and shell nanowires have the wurtzite crystal structure with
the �0001� direction along the axis of the wire. Considering
the full elastic stiffness matrices of the materials, they have
analyzed the stress field when the longitudinal misft strain is
different from the radial one. Likewise, in the case of two
cubic crystals, Trammel et al.22 have calculated the stress as
a function of the stiffness matrix coefficients when the lattice
parameters of the core �i� and shell �o� are such that a�

i

=a�
o, az

i =az
o, and a�

i �a�
o,. Using isotropic and linear elastic-

ity, Ovid’ko et al.15 have also investigated the stress field in
nanowires when a dilatational misft strain �ij

� =���ij is present
in the inner nanowire and the elastic constants of both mate-
rials are equal, with �� a constant and �ij =1 when i= j and =0
when i� j. In this paper, the formalism used by the previ-
ously cited authors has been considered to determine, within
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the framework of linear and isotropic elasticity, the stress in
a core-shell heterostructure when the lattice parameters of
both core and shell materials of different elastic constants
lead to isotropic eigenstrain which can be located in the inner
nanowire: ���

� =���
� =�zz

� =��, with �� a constant. The effect of
interface stress and anisotropy of the eigenstrain as the size
of the nanowires reduces are beyond the scope of the present
analysis. The different steps of the calculation can be then
summarized as follows. The resulting elastic state of the core
and shell has been determined using the following form24,25

of the misft elastic displacement field u�
m,p�� ,z�=Ap

m

+Bp
m /� , u�

m,p�� ,z�=0, uz
m,p�� ,z�=Cp

mz, with Ap
m , Bp

m and
Cp

m three coefficients and p= i ,o in the inner and outer nano-
wire, respectively. The misft strain and stress tensors, respec-
tively, labeled ��m,p and �� m,p are then determined from um,p

using the classical laws of linear and isotropic elasticity ex-
pressed in cylindrical coordinates.25 Assuming a finite value
of the elastic displacement at �=0, one takes Bi=0 and the
other coefficients are determined with the help of the follow-
ing conditions that guarantee the mechanical equilibrium of
the heterostructure. At the interface �i, one writes ��� m,i

−�� m,o� ·ni=0 and um,i+�� ·x=um,o, with ni the unit normal
vector to the interface pointing into the shell and x the posi-
tion vector. At the outer radius �o, one takes �m,o ·no=0 with
no the unit normal vector to the free surface pointing into the
vacuum, and ��o

2−�i
2��zz

m,o+�i
2�zz

m,i=0 in the cross section of
the heterostructure. The final cumbersome expressions of the
misfit strain and stress tensor components determined with
the help of a CALCULUS software30 are not displayed in this
paper. The elasticity problem of prismatic dislocation loops
lying into the interface between the core and shell nanowires
of equal elastic coefficients has already been
considered.14,15,21,22 In the following, the case of an isolated
dislocation loop is addressed when the loop is not constraint
into the interface, the core and shell nanowires having dif-
ferent elastic constants. At this point, it can be underlined
that the study of the full relaxation mechanism of misft
stresses would require to consider a periodic array of dislo-
cation loops lying along the nanostructure axis. However, it
is assumed that when the misft is sufficiently small such that
the distance between two consecutive loops is greater than
the diameter of the core nanowire �and much greater than the
dislocation-interface distance�, the effect of the other dislo-
cations onto the equilibrium position of each loop can be
neglected. The following calculation has been performed in
this hypothesis. A prismatic dislocation loop whose center is
located at the center line �=0 is first considered in an infinite
media of the same elastic constants as the inner nanowire,
with �Oz� its symmetry axis. The radius of the loop is labeled
�d, its Burgers vector b=bzez, with ez a unit vector along
�Oz� axis. It is well known that the elastic stress tensor and
displacement field of such a loop are fully determined from a
biharmonic stress function 	


i satisfying �2	

i �� ,z�=0 and

given by26,27

	

i ��̃, z̃� =

�ibz�d
2

2�1 − �i�
�

0

+
 �2�i

�z̃�
z

+ k�z̃��J1�k̃�J0�k�̃�
e−k�z̃�

k2 dk

�1�

with � the Laplacian, J0 and J1 the Bessel functions of the
first kind of zero and first order, respectively, z̃=z /�d and �̃

=� /�d. When the loop is now introduced into the inner nano-
wire coated with its thin shell, the stress function is modified
as follows: 	p�r̃ , z̃�=	


p ��̃ , z̃�+	rel
p ��̃ , z̃� with p= i ,o and 	


o

=0. The general expression of the relaxation part of the stress
function 	rel

p due to the core/shell interface and shell free
surface is written as25

	rel
p ��̃, z̃� =

�ibz�d
2

2�1 − �i�
�

0

+


�I0�k�̃�g1
p�k� − k�̃I1�k�̃�g2

p�k�

+ K0�k�̃�g3
p�k� − k�̃I1�k�̃�g4

p�k��sin kz̃ dk , �2�

where In and Kn are the modified Bessel functions of the first
and second kind, respectively, of order n, with n=0,1. The
gj

p coefficients, with j=1,2 ,3 ,4 and p= i ,o, are determined
with the help of the mechanical equilibrium equations which
have already been used in the first step of this work to de-
termine the misft stress, i.e., continuity of the normal traction
and total displacement at the core/shell interface, the shell
free surface being traction free. Following Refs. 14, 15, and
25, the sine and cosine Fourier transforms of the initial stress
components �ij


,p have been first expressed using integrals of
Lipschitz-Hankel type.28 The above-mentioned equations re-
sulting from the equilibrium conditions at the interface and
free surface have been then solved in the Fourier space.30

The heavy but straightforward calculations are not detailed
in this paper, the cumbersome expressions of the gj

p coeffi-
cients are neither given. Once the total stress tensor �� p

=�� 
,p+�� rel,p has been determined in the heterostructure,
with �� 
,p and �� rel,p the stress tensors derived within elastic-
ity theory25 from 	


p and 	rel
p , respectively, the formation of

the prismatic dislocation loop has been investigated from an
energetic point of view, the kinetics of the loop being beyond
the scope of the present analysis. Likewise, the nucleation
process of the loop has not been addressed in this work based
on a continuum mechanics approach and the “initial state”
for the dislocation has been taken to be a small loop of core
radius �c=bz located at the center of the nanowire. The en-
ergy variation �F due to the spreading of the loop from the
center of the core nanowire until a given radius �d��i is
determined with respect to the dislocation free
heterostructure.14,15,29 It is the sum of three terms, the proper
energy �Fpr defined by

�Fpr =
bz

2
�

0

2 �
0

�d−bz

��zz

,i��̃, z̃ = 0� + �zz

rel,i��̃, z̃ = 0���d�d� ,

�3�

the energy term �Fmi characterizing the interaction between
the misft stress and the loop,

�Fmi = bz�
0

2 �
0

�d

�zz
m,i��̃, z̃ = 0��d�d� , �4�

and the core energy �Fco,

�Fco =
�ibz

2�d

2�1 − �i�
. �5�

One finally gets
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�F = F0
�i

�o
	 1



�d

bz
+ 4�1 − �p���d

bz
�2

��
�1

�2

+
2



�d

bz
�K�x̃� − E�x̃�� +

�d

bz
�

0

+


��k, x̃�dk
 �6�

with K and E the complete elliptic integrals of the first and
second kind, respectively, F0=�obz

3 / �2�1−�i�� and x̃=1
−bz /�d. The functions �1, �2, and � are defined by

�1 = − �i�1 + �o��1 + �i���o
2 − �i

2����o + �i��o
2 + ��i − �o��i

2� ,

�7�

�2 = �1 + �i��i
2�i

2��o
2 + �1 − 2�o��i

2�

+ �1 + �o��1 − 2�i��o
2��o

2 − �i
2�2

+ �i�o��o
2 − �i

2���1 + �o��o
2 + �2 − �o − �i − 4�i�o��i

2� ,

�8�

��k, x̃� = k2x̃I1�kx̃��g1
i �k� − 2�2 − �i�g2

i �k�� − kg2
i �k��k2x̃2I0�kx̃�

− 2kx̃I1�k�� . �9�

Following Ovid’ko et al.,14,15 the formation of prismatic dis-
location loops of radius �d is assumed to be energetically
favorable when �F�0. To investigate the effect of misft
stress and shear moduli of both phases on the formation into
the core nanowire of the dislocation loop, the last integral in
the expression of the total-energy variation given in Eq. �6�
has been numerically estimated30 and �F /F0 has been plot-
ted in Fig. 1 as a function of �d with bz��d��i, for two
different values of �i and for �i=50bz, �o=65bz, ��=0.66%,
�o=100 GPa, and �i=�o=0.3. It is found that whereas
�F /F0 is always positive for �i=20 GPa, such that the for-
mation of the loop inside the core nanowire is not energeti-
cally favorable, �F /F0 becomes negative beyond �d

c �38bz
for �i=10 GPa and is minimum �and negative� for �d

eq

�45bz. It is thus suspected that when the core is sufficiently

soft with respect to the shell, one possible relaxation mecha-
nism of the strained heterostructure may result in the forma-
tion of prismatic dislocation loops whose equilibrium posi-
tions, depending on misft strain, are not into the core/shell
interface but in the nanowire at a few interatomic distances
from it. This result can be qualitatively understood by ana-
lyzing the sign of the different forces acting onto the loop.
Indeed, whereas the misft stress attracts the loop into the
interface, the force resulting from the difference between
both shear moduli, in addition with the shrinking effect of
the line tension, is supposed to repel the dislocation from it.
Depending on the relative values of the different forces, the
equilibrium positions of the loop can thus be located in the
nanowire. These coupled effects between the shear moduli
and misft strain onto the loop equilibrium positions has been
illustrated in Fig. 2 where �d

eq has been plotted as a function
of �� for different values of the ratio of the shear modulus
between the two phases ��o being constant�. Since the
spreading of the core of the dislocation into the interface is
assumed to be beyond the scope of this paper, the determi-
nation of �d

eq has been cut off in the following when �d
eq

reaches �i−0.49bz. It is observed that for fixed values of the

FIG. 3. �Color online� �d
eq,c /bz versus �c

� for different values of
�i, with �o=100 GPa, �i=�o=0.3, ri=50bz, and ro=65bz.

FIG. 1. �Color online� �F /F0 versus �d /bz for �i=10 GPa and
�i=20 GPa, with �o=100 GPa, �i=�o=0.3, ri=50bz, and ro

=65bz.

FIG. 2. �Color online� �d
eq /bz versus �� for different values of �i,

with �o=100 GPa, �i=�o=0.3, ri=50bz, and ro=65bz.
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�i and �o radii, the range of �d
eq values increases as the ratio

�i /�o decreases �with �o=100 GPa�. A critical misft strain
�c

� can also be defined from Fig. 2 below which the total-
energy variation �F becomes positive such that no equilib-
rium position in the inner nanowire can be found for the
loop. It corresponds to the strain threshold for which the
minimum of �F goes to zero �with negative values� as the
increasing loop/interface distance reaches its maximum
value. It allows thus to define �d

eq,c the critical equilibrium
radius of the loop in the inner nanowire corresponding to the
minimum value of �d

eq. It can be underlined that �d
eq,c ob-

tained for �c
�, also decreases with �i /�o. On the other hand,

for �i /�o�0.7, the loop is suspected to develop with an
equilibrium radius �d

eq�49.51bz such that it has been consid-
ered as laying into the interface. In Fig. 3, �d

eq,c has been
plotted versus �c

� for the set of shear modulus ratios already
used in Fig. 2 �with �o=100 GPa�. The almost linear growth
of this critical equilibrium radius with the critical misft strain
is then clearly illustrated in the range �c

�� �0.0074,0.0108�.
The geometric effect of the radii onto the loop equilibrium
positions has been finally characterized in Figs. 4 and 5 in
the hypothesis where the thickness of the shell �o−�i re-
mains constant and egal to 15bz, with �i=10 GPa and �o
=100 GPa. In Fig. 4, it can be observed that as the radius of
the inner nanowire decreases from 50bz to 15bz, the equilib-
rium position of the loop can still be inside the nanowire
rather than into the interface, depending on the misft strain
whose range of values decreases with �i. The critical misft
strain �c

� has been plotted in Fig. 5 versus the critical equi-

librium radius �d
eq,c. It is found that in the radius range

�15bz ,50bz�, the misft strain required to reach this loop equi-
librium position is increased at constant shell thickness as the
inner radius �i decreases. Finally, it can be emphasized that
the results obtained in this work may apply to a wide range
of oxide/metal interfaces in nanostructures of technological
interest �in microelectronics or aeronautics for example� for
which the shear modulus ratio can take high values, for ex-
ample on the order of 5.5 for Al2O3 /Al nanocomposites.
Indeed, since the strength and plasticity of such nanowires
are structure dependent, it appears that the control of their
nanoscale interface properties through the control of the dis-
location positions is of paramount importance.

In this paper, the possibility of formation of prismatic
dislocation loops in a nanowire, at a few interatomic dis-
tances from its interface with a harder thin outer shell has
been investigated and the coupling effects between the shear
moduli, the inner and outer radii and the misft strain has
been identified. It is believed that this study raises further
problems concerning the plasticity of confined nanostruc-
tures among which are the localization of the preferential
nucleation areas of the loop �the inner nanowire, the free
surface of the shell?� and the possible interface crossover of
the loops. A coupled approach based on continuum mechan-
ics and atomistic-scale description of the dislocation forma-
tion through molecular-dynamics simulations would help in
answering to these fundamental questions.

Enlightening discussions with J. Grilhé are warmly ac-
knowledged.
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